Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics By Seshadev Padhi, John R. Graef, P. D. N. Srinivasu
2014 | 160 Pages | ISBN: 8132218949 | PDF | 2 MB

This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment.


Alternate Link for Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics.rar When above links are dead
 kbps

Hello Respective Visitor!

Please Login or Create a FREE Account to gain accesss to hidden contents.

Information

Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.